
NUSC Technical Memorandum 841114
14 June 1984

REFERENCE ONLY

Computation of the Control Flow
Complexity of FORTRAN Modules

William A. Babson
Marvin J. Goldstein
Computer and Information Services Department

REfER£NC£ ONLY

. Naval Underwater Systems Center
Newport, Rhode Island I New London, Connecticut

Approved for public release; distribution unlimited

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
14 JUN 1984

2. REPORT TYPE
Technical Memo

3. DATES COVERED
 14-06-1984 to 14-06-1984

4. TITLE AND SUBTITLE
Computation of the Control Flow Complexity of FORTRAN Modules

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
William Babson; Marvin Goldstein

5d. PROJECT NUMBER
771Y00

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Underwater Systems Center,New London,CT,06320

8. PERFORMING ORGANIZATION
REPORT NUMBER
TM 841114

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
NUWC2015

14. ABSTRACT
A Pascal program to compute McCabe’s control flow complexity metric for FORTRAN modules is
presented. McCabe’s metric which is called the cyclomatic number gives the size of any basis set of control
flow paths through a program module. McCabe’s metric is a useful indicator of the level of difficulty
required to test and maintain a program module.

15. SUBJECT TERMS
Pascal; McCabe’s metric; Fortran; Special Projects and Studies; cyclomatic number

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

NAVAL UNDERWATER SYSTEMS CENTER
NEW LONDON LABORATORY

NEW LONDON, CONNECTICUT 06320

Technical Memorandum

TM No. 841114

e;t fJC I

COMPUTATION OF THE CONTROL FLOW COMPLEXITY OF FORTRAN MODULES

Date: 14 June 1984

. .

tJ -~ ~ -o:-Prepared by: ~W'Y'I~/t;;,~r;v ,/L.
William A. abson ?
Comouter and Information
Services Department

~- 11~ '-,-z.._,~-~._,~~
Marvin J. Gold~n
Computer and Information
Services Deoartment

Distribution Statement "A"
Approved for oublic release;
distribution unlimited

TM No. 841114

ABSTRACT

A Pascal program to compute McCabe's control flow complexity metric for
FORTRAN modules is presented. McCabe's metric which is called the cyclomatic
number gives the size of any basis set of control flow paths through a program
module. McCabe's metric is a useful indicator of the level of difficulty
required to test and maintain a program module.

ADMINISTRATIVE INFORMATION

This memorandum was prepared under Job Order No. 771YOO. Special Projects
and Studies. The authors are located at the Naval Underwater Systems Center.
New London~ Connecticut, 06320.

3/4
Reverse Blank

TM No. 841114

I NTROOUCT ION

McCabe's cyclomatic number (denoted v(G)) is a control flow comolexitv
measure derived from graph theory by Thomas J. McCabe [11. It measures the
size of the smallest set of ·oaths which will generate every possihle oath
through a program modul~. This set may be thought of as a basis set (of
control flow oaths) for the module.

The cyclomatic number has been proposed for several uses. amonq them
determining the minimum number of test cases required to test every statement
in a program and as a method of controlling module size. McCabe suqqests that
a v(G) greater than ten may lead to testing and maintenance oroblems.

The proqram presented to compute McCabe's cyclomatic number is written in
Pascal and computes the cyclomatic number as a function of the decision nodes
in a program module. A user settable switch is provirled to allow the ootional
viewing of the decision nodes as a module analysis aid. The program will
handle any number of FORTRAN modules (main programs. subroutines. functions)
in the file it examines as long as each has it's own "END" statement.

BACKGROUND

McCabe's c.vclomatic number is a program flow complexity metric taken from
Graoh theory by defining a mapping between a oroqram module and a directed
graph classically called the program control graph. Blocks of sequential code
are mapped into the nodes. and transfers of control between blocks into the
arcs of the qraph.

The cyclomatic number (v(G)) of any graph G withe edqes. n nodes and P
connected components (in this case. the number of connected components can be
assumed to be one) is defined to be:

v(G) = e - n + 2o (1)

The cyclomatic number is the number of linearly independent paths throuqh
the qraph. which when taken in combination generate all possible paths throuqh
the qraph. So. by the mapping. the maximum number of 1 inearl.v independent
oaths through the program module is given by the cyclomatic number. In his
paper. McCabe shows that v(G) may also be computed by:

v(G) = d + 1 (2)

where d is the sum of one less than the number of outgoing arcs from each
decision node. (A decision node is a node that has two or more outgoing arcs.)

5

TM No. 841114

Figure 1

FUNCTION SIMPSN(FUNC,XMIN,XMAX,N)
c
C ... THIS FUNCTION INTEGRATES A FUNCTION BY SIMPSON ' S
C ... RULE; FUNC IS THE NAME FOR THE DUMMY FUNCTION TO
C ... BE INTEGRATED
c

H=(XMAX-XMIN)/N
SUM=O . O
X=XMIN+H
DO 10 I =2, N
IF (MOD(I,2).EQ.O)THEN

SUM=SUM+4.*FUNC(X)
ELSE

SUM=SUM+2,*FUNC(X)
ENDIF
X=X+H

10 CONTINUE
SIMPSN=H/3 . *(FUNC(XMIN)+SUM+FUNC(XMAX))
RETURN
END

In figure 1 a simple FORTRAN module is presented. In figure 2 this
module is broken into blocks that represent nodes in graphical form. Figure 3
shows the equivalent program flow graph.

6

Figure 2

FUNCTION SIMPSN(FUNC,XMIN,XMAX,N)
c
c
c
c
c

.. . THIS FUNCTION INTEGRATES A FUNCTION BY SIMPSON ' S

. . , RULE; FUNC IS THE NAME FOR THE DUMMY FUNCTION TO

. . . BE INTEGRATED

c---------------------- ------1-node
c v

H=(XMAX-XMIN)/N
SUM=O . O
X=XMIN+H

A -----------------------

C----------------------------1-node B - (loopldec isi on))------
C V

00 10 I=2, N
c- --------------------------- 1-node c - (deci s ion)----- - ------
c v

IF (MOO (I , 2) • EQ . 0) THEN
c----------------------------1-node 0 -----------------------
c v

SUM=SUM+4,*FUNC(X)
C----------------------------1-node E -- - - - ---- ------- -------
C v

ELSE
SUM=SUM+2 , *FUNC(X)

END IF
C----------------------------1-node F -----------------------
C v

X=X+H
10 CONTINUE
C---- - -------------- - --------1-node G - ---- ---- --- -----------
C v

SIMPSN=H/3 , *(FUNC (XMIN)+SUM+FUNC(XMAX))
RETURN
END .

c--

TM No. 841114

Figure 3

7

TM No. 841114

By counting the number of nodes and edqes and apolyinq (1). or
equivalently counting the number of decision nodes and applying (2). the
cyclomatic number of the FORTRAN proqram module may be obtained. In the
example above:

v(G) = e - n + 2p = 8 - 7 + 2 = 3

or

v(G) = d + 1 = 2 + 1 = 3

In particular. each of the following sets of oaths is a basis for the
graoh in figure 3:

where:

~B CD F B. B C E F B. A B G}

{A B C D F B G. A B C E F B G. A B G}

B C D F B = A B C D F B G - A 8 G

B C E F 8 = A 8 C E F 8 G - A B G

Some properties of v(G) of interest follow:

1. v(G) depends only on the decision structure of G.

(3)

(4)

2. Addinq or delettng function nodes in .the module does not change v(G).

8

3. The total cvclomatic number of a oroqram is equal to the sum of the
c.vclomatic numbers of the modules.

TM No. 841114

APPLICATIONS

The cyclomatic number bounds the minimum number of test cases that
exercise all the statements in a program module. Since a program may have an
infinite number of paths through it {an example is DO WHILE (Niagara Falls}),
it is not always possible to check every path. However, it is possible to
check every statement. Since in the traversal of a maximal set of linearly
independent paths every node of the program control graph is visited, the
cyclomatic number is an upper bound on the minimum number of tests required to
visit all statements in a program module. For example, we draw the reader's
attention to the basis set (4) for Figure 3. where only two of the three paths
have to be traversed to visit every statement in the program. On the other
hand. traversing all paths in a basis set guarantees that every arc in the
program control graph is also traversed. Thus, if one can identify a basis of
v{G) paths (like (4)) that traverse the program control graph from entry node
to exit node, and select a corresponding set of v(G) tests that visit these
paths, then one can exercise every transfer of control between program blocks,
as well as every statement in the program.

It should be pointed out that having each and every transfer of control
traversed at least once is more stringent than having each and every statement
executed at least once. This is so because visiting each and every transfer
of control implies that every statement in the module is executed, but not
conversely. This is illustrated in Figure 4, where traversal of the path ·PQR
executes every statement in the program but fails to execute the branch {P,R).

Figure 4

F

9

TM No. 841114

However, it should be emphasized that the Pascal program described in the
next two sections computes only the cyclomatic number. Developing a program
that identifies a basis set of paths is a matter that requires further study.
In any event, the cyclomatic number can be used to improve a program module's
testability- if a module's v(G} is greater than some threshold value, then it
should be redesigned to drive its v(G) below the threshold, so that a smaller
basis set of tests will visit every statement in the program. Although McCabe
suggests a threshold value of 10, this value is by no means sacrosanct.

ALGORITHM

The Pascal program computes the cyclomatic number by operating on all the
decision nodes in a file until it encounters a FORTRAN "END" statement. Each
decision node is converted into a positive integer that is accumulated in a
running sum. When an "END" statement is detected, the number one is added to
the sum and then the result is displayed as the cyclomatic complexity count
for the module. · The running sum is then set to zero and the process repeated
until the end of the file is reached.

Specific decision nodes are found by ignoring FORTRAN comments and
building complete FORTRAN statements from the remaining source. When a
FORTRAN statement is completed, it is examined for keywords. If the statement
is identified as a decision node, then either the number one or one less than
the number of exits from the decision node is added to the running sum.
Otherwise, the statement is discarded and the next statement is constructed
and examined. If an "END" statement is detected, the cyclomatic number is
computed and displayed. When an end of file condition is detected, the
program ends.

Because the program examines statements in this manner, there is no limit
on the number of lines in the FORTRAN source file or on the number of modules
in the file. The maximum number of decision nodes that it will count in any
one module is limited only by the respective (UNIVAC or VAX) Pascal's maximum
integer (MAXINT). The program accepts ANSI-77 FORTRAN and recognizes the
decision nodes shown in Figure 5.

The Pascal program will not process FORTRAN modules that contain tab
characters. Tab characters may be removed by using the CLEAN utility program
[4 J.

10

TM No. 841114

Figure 5

Tne Pascal program recognizes tne fol luwing FORTRAN control
structures and assigns eacn a complexity c~unt ot 1:

1 l DO I oops
DO <label> <integer variable>= <field>,<field>

2) { Block DO loops }
DO <integer variable> <field>,<field>

END DO

3) DO WHILE loops I
DO <label> WHILE t<ooolean expression>)

4) Block 00 WHILE luu~s }
DO WHILE (<oo~lean expression>)

END DO

bl Logical IF}
IF (<boolean expression>) <FORTRAN key word>

bl Logical IF in ELSE clause
ELSE IF (<ooolean expression>) <FORTRAN key word>

Tne Pascal program assigns tne complexity numoer of one less
tna11 tne numoer of unique statement labels in tne associated
label list of eacn of tne following control structures:

7) Arithmetic IF }
IF(<variaol e>) < laoe 11>, <I ao.e 12>, < 1 aoe13>

B) Arithmetic IF in ELSE clause }
ELSE lf(<variaole>}<laOel t>,<labe12>,<1abe13>

9) Computed GOTU)
GOTO(<labell>, ... ,<labeln>l ,<integer variable>

101 Computea GOTO in ELSE clause }
ELSE GOTO(< laDe I I>, . . . ,< I abel n> l, <integer variao le>

Tne Pascal program al l ows Computea GOTO"s and Arithmetic IF
statements to follow Logical IF's (or ELSE If's) as per ANSI 77(51

11) (Arithmetic IF following Log i cal IF}
[ELSE) IF(<boolean expression>) IF(<variaOle>)

T <laoelt>,<label2>,<1abel3>

12) (Computed GOTO following Logical IF}
[ELSE] IF(<boolean expression>) GOTO(·<laoel 1>, .. ,<laoeln>),
+ <integer variable>

11

TM No. 841114

USING THE PROGRAM

In the two examples below. ever.vthinq that the user would type is
unrlerlined.

I. Usinq the Proqram on the VAX {V701. V703. V70A)

To comoute the cyclomatic comolexity of the oroqram in fioure 1 on the
VAX the followinq DCL ma.v be used, where CYCL TEST .FOR is the file name of the
oroqram in fiqure 1.

$ASSIGN/USER MODE CYCLETEST.FOR INFILE
$ RUN [MJG.CLEAN]CYCL

orint out decision nodes ? <y,n>: Y

DO 10 1=2.N
IF (M00(1.2).EQ.O)THEN

McCabe's cyclomatic number for module 1 is 3.

<ENOFILE>

The utility is not case sensitive. If the Tab-Formatting feature availabl~
with the VAX FORTRAN has been used, the CLEAN utility will have to be used before
invoking the cyclomatic number program [41.

II. Using the Program on the UNIVAC:
.

On the UNIVAC, the c.vclomatic number proqram may he found in
CYCL*PAS.UTIL on node 2 in New London. For the followinq samole runstream an
imaqinarv FORTRAN source element of FOO*BAR.CYCLTEST which holds the ornaram
qiven in Fiqure 1 will be used.

12

>'i>ASG. A FOO*BAR.
>READY
YAIASG. T I NF I LE.
>READY
~EO FOO*BAR.CYCLTEST.INFILE.
~XQT CYC[*PAs.OTtL
>
> print out decision nodes ? <.Y,n>: !
>
>

>

DO 10 1=2. N
IF (MOD(I.2).EQ.O)THEN

>McCabe's cyclomatic number for module 1 is 3.
>
> <ENOFILE>
>

TM No. 841114

CONCLUSION

A Pascal program is presented which computes McCabe's cyclomatic number,
the cardinality ot any basis set of control flow paths through a program
module. Since all paths through the module may be generated from a basis set,
the cyclomatic number bounds the minimum number of tests needed to exercise
every transfer of control between program blocks in the program module, as
well as every program statement. Therefore, the Pascal program may be used to
earmark program modules for redesign that require a large number of tests to
validate the correctness of every transfer of control. The redesign effort
should strive to reduce the cyclomatic number of any program module to some
acceptable threshold value in order to improve the module's maintainability
with respect to it's testability.

13

TM No. 841114

REFERENCES

1. Thomas J. McCabe. "A Comolexit.v Measure." IEEE Transactions on Software
Engineering. Volume SE-2, number 4. (December. 1976).

2. Glenford J. Meyers, "An Extension to the Cyclomatic Measure of Proqram
Comolexity." ACM SIGPLAN NOTICES. Volume 12 (October 1977).

3. Wilfred J. Hansen, "Measurement of Program Cnmplexity by the Pair
(C.vclomatic Number. Operator (Count)." ACM SIGPLAN. Volume 13 (Mav 1978).

4. M. J. Goldstein and John Lawson, Jr., "A New Program Aid in Producing
Structured FORTRAN Programs." NUSC TM No. 821162 (November, 1982).

5. American National Standards Programming Lanquaqe FORTRAN ANSI X3.9 1977,
American National Standards Institute. New York. NY (1978).

6. M. J. Goldstein and John Lawson, Jr .. "An Examole of Quality Mathematical
Software," NUSC TM No. 811044, (15 Aoril. 1981).

7. Brian W. Kernighan and P. ,], Plauqer. The Elements of Programming Style,
McGraw-Hill Book Company (1974).

14

TM No. 841114

COMPUTATION OF THE CONTROL FLOW COMPLEXITY OF FORTRAN MODULES
William A. Babson
Marvin J. Goldstein, Comouter and Information Serivces Dept.
TM No. 841114
14 June 1984
UNCLASSIFIED

DISTRIBUTION LIST

EXTERNAL

Mr. I. L. Avrunin
David Taylor Naval Ship

Research a Development
Center

Headquarters
Bethesda, MD 20084

Mr. James Dooley
Nava, Data Automation

Command
Washinqton Navy Yard
Washinqton. DC 20374

Mr. John Baird
NOSC
San DiPgO, CA 92152

Ms. Mary Ann Engelbert
Naval Data Automation

Command
Washington Navy Yard
Washington. DC 20374

Ms. Fran Kazlauski
Naval Data Automation

Command
Washington Navy Yard
Washington, DC 20374

Or. Martin Schultz
Research Center for Scientific Camp.
Yale Univ.
P. 0. Box 2158 Yale Station
New Haven. CT 06520

Mr. Ken Kunec
Naval Data Automation

Command
Washington Navy Yard
Washington, DC 20374

Mr. Al Poulin
Naval Intelliqence Command
Headquarters
4600 Silver Hill Road
Washington, DC 20389

Ms. Becky Swales
Naval Data Automation

Command
Headquarters
4600 Silver Hill Road
Washington, DC 20389

Mr. Larry Williams
Naval Intelligence

Command
Headquarters
4600 Silver Hill Road
Washington, DC 20389

15

TM No. 841114

Internal:

Code 00 CAPT Ailes Code 33 s. c. Gerenqher
01 E. L. Messere J. Greqor
01A John Keegan w. A. Goldman
039 Or. D. M. Viccone P. M. Anchors
10 Or. W. A. VanWinkle J. J. Hiqqs
101 Dr. E. Eby I. B. Cohen

L. Goodman D. W. Counsellor
02 D. C. K indil i en Or. R. Radliniski
0211 R. H. Bernier D. A. Finqerman
02 NL Library (3 cooies) R. J. Trembley
021311 NPT library J. E. Miller

Or. H. F. Dwyer
20 W. L. Clearwaters Dr. C. Carter
234 R. J. Conley A. Quazi
32 A. Les ick Peter Stahl

Dr. N. L. Owsley J. Wolcin
Or. John Ianniello Or. M. B. Moffett
J. K. Su 11 ivan c. J. Becker
R. Streit E. C. Gannon
W. Axtell R. J. MacDonald
R. C. Cox J. Saikowski --
James Pearson G. Botseas
L. C. Ng Dr. D. Lee
J. V. Sanchis J. Nordquist
J. Ferrie E. R. Robinson

. B • He 1 me. Jr. H. Weinberq
Dr. c. H. Sherman H. Sternberq
W. Fox Or. David Wood·
B. G. Buehler Michael Fecher
A. l.oJ. Ellenthoroe 34 J. R. Katan
Or. Peter G. Cable Or. D. E. Fessenden
Or. S. Ko K. F. Hafner
0. T. Porter John Case.v
W. H. Wharton Anthony Bruno
T. Anderson D. Dixon
J. Ionata 35 Tom Conrad
M. Kuuznitz L. Cabra 1
J. Gannon 36 R. P. Ei dimtas
C. Bowman H. A. Rosen
P. R. Miner R. V. Cherry
Rosemany Molino w. J. Ryan
Jose Munoz J. Griffin
0. Rawson D. G. Blundell
J. Shores M. P. Lydon
W. Strawderman s. I. Wax
R. Leask S. E. Ashton
0. Yarqer Raymond McMahon
Russell Christman S. Meyers

33 Dr. A. H. Nutta 1 37 C. M. Curtis
J. B. Paniszcz.vn Q. Hu_ynh
Dr. F. R: OiNapol i 38 J. E. Sims
E. P. Jenson W. H. Greene
E. G. Kanabis 401 A. 0. Carlson

16

TM No. 841114

Internal:

Code 401 J. H. Clark Code 73 R. Forqet . ·
Dr. A. J. Kalinowski A. Sullivan
Or. R. G. Kasper J. Surdo
R. R. Manstan 74 M. Lee
E. L. Mclaughlin c. Brockway
R. S. Munn M. Becker
C. W. Nebelunq L. Doyle
Or. J. S. Patel J. Koonce
B. A. Radley J. Paooadia
A. Y. Slliqematsu A. Levander
M. A. Tucchio Norman Dube Not

402 M. Berqer A. Blau Not
4111 Samuel Horvitz D. Stanhope Not
4331 B. L. Antrim R. Hoy Not

S. B. Walsh N. Bradbury Not
434 K. Steele

G. Lussier
5202 Stephan Schady
60 Dr. D. Borde 1 on

Dr. Jeffrey Cohen
70 Cart R. DeVoe
701 R. Wilson Not

D. 1\'!cCue
J. Babiec Not

71 G. Elias Not
M. Goldstein (15 Copies)
D. Drinkard
D·. Aker
N. Sul insk i
W. Babson (15 Copies)
E. Montavon
J. Sikorski
Louis Ledoux Not
R. Johnson
~ynthia Borqes Not
Marcel Nadeau Not
John Ventura Not
Phoebe Liu Not
John Sabulis Not

72 Gordon Daqlieri Not
S. Schneller Not
J. Auwood
T. Wheeler
R. Warren Not
P. Breslin Not
A. Alfiero
R. Clark
J. Gribbin

73 D. Quiqle.v
S. Capizzano
J. MacDonald
R. Pinqree
R. Cote

17

